Acta Cryst. (1983). C39, 1238-1239

Structure du thréo-(Hydroxy-1 éthyl)-2 Dihydro-2,3 Benzo[b]thiophènedioxyde-1,1, C₁₀H₁₂O₃S

PAR JACOUES TRÉHOUX ET FRANCIS ABRAHAM

Equipe de Cristallochimie et Physicochimie du Solide, ERA-CNRS 1004, ENSCL, BP 108, 59652 Villeneuve d'Asca CEDEX, France

ET PIERRE GRANDCLAUDON

Laboratoire de Chimie Organique Physique, ERA-CNRS 827, Université des Sciences et Techniques de Lille, 59655 Villeneuve d'Ascq CEDEX, France

(Recu le 1 octobre 1982, accepté le 10 mai 1983)

Abstract. $M_r = 212.26$, monoclinic, $P2_1/c$, a =8.525 (2), b = 7.890 (1), c = 12.878 (3) Å, $\beta =$ 122.52 (4)°, V = 1013.96 Å³, Z = 4, $D_m = 1.36$ (4), $D_x = 1.39$ Mg m⁻³, Mo Ka, $\lambda = 0.7107$ Å, $\mu =$ 2.94 cm^{-1} , F(000) = 448, T = 298 K, R = 0.037, $R_w = 0.039$ for 738 unique reflections. The structure shows that the studied compound is the threo diastereoisomer.

Introduction. Le comportement des diastéréoisomères d'une β -hydroxysulfone lors d'une déshydratation acido catalysée dépend de leur structure (Truce & Klinger, 1970). C'est notamment le cas des deux diastéréoisomères de l'(hydroxy-1 éthyl)-2 dihydro-2,3 benzo[b]thiophènedioxyde-1,1 (Grandclaudon & Lablache-Combier, 1983). L'un de ces isomères étant cristallisé, nous avons entrepris la détermination de sa structure par diffraction des rayons X.

Partie expérimentale. Addition d'acétaldéhyde sur le dérivé organomagnésien du dihydro-2,3 benzo-[b]thiophènedioxyde-1,1 puis hydrolyse donne un mélange équimolaire de deux diastéréoisomères séparés par chromatographie sur couche mince; seul l'isomère thréo est cristallisé, monocristaux à partir d'une solution de tétrachlorure de carbone; paramètres de maille à partir de 25 réflexions, cristal en plaquette, $0,320 \times 0,125 \times 0,180$ mm, masse volumique mesurée par flottation, diffractomètre Philips PW 1100, 2100 réflexions avec $2 < \theta < 22^\circ$, -8 < h < 8, -9 < k < 9, 0 < l < 17, dont 1343 avec $I > 3\sigma$ (I), 738 réflexions indépendantes, $R_{int} = 0,025$, 3 réflexions de référence (214, 112, 040), correction de Lorentz-polarisation, pas de correction d'absorption, méthodes directes, MULTAN (Germain, Main & Woolfson, 1970), affinement par moindres carrés (basé sur F), SFLS-5 (Prewitt, 1966), H localisés par synthèse de Fourier différence, puis affinement de leur position, autres atomes: affinement position, B isotrope puis anisotrope, $R_w = 0.039$, w = 1, facteur de diffusion (Cromer & Waber, 1965), corrigés de la dispersion anomale (Cromer & Liberman, 1970).*

Discussion. Le Tableau 1 donne les paramètres atomiques et le Tableau 2 les distances et angles interatomiques. La configuration de la molécule est représentée sur la Fig. 1 et la structure cristalline sur la Fig. 2.

Le cycle benzénique du fragment dihydrobenzo[b]thiophènedioxyde est, comme dans le cas de la molécule similaire, précédemment étudiée (Abraham, Trehoux & Grandclaudon, 1983), peu déformé, les déformations étant identiques et donc dues à la

^{*} Les listes des facteurs de structure, des coefficients d'agitation thermique anisotrope, des distances et angles faisant intervenir les atomes d'hydrogène, l'équation du plan moyen du cycle benzénique et les distances au plan moyen ont été déposées au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 38592: 10 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester, CH1 2HU, Angleterre.

Tableau	1.	Cordonnées	(×10 ⁴)	et ,	facteurs	d'agitation			
thermique isotrope des atomes									

-	-				
$B_{eq} = \frac{4}{3} \sum_{i} \sum_{j} \beta_{ij} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$					
x	y	Ζ	$B(\dot{A}^2)$		
6364 (2)	8580(1)	1862 (1)	3,5 (1)		
4684 (5)	7826 (5)	1722 (2)	5,4 (2)		
6976 (6)	8108 (5)	1277 (3)	5,0 (2)		
8220 (6)	8294 (7)	2970 (3)	3,5 (3)		
8759 (9)	6762 (8)	3427 (5)	5,0 (3)		
10312 (10)	6812 (11)	4297 (5)	6,0 (4)		
11219 (9)	8303 (12)	4659 (5)	6,2 (4)		
10646 (9)	9809 (10)	4193 (5)	5,6 (3)		
9104 (7)	9810 (7)	3326 (4)	3,9 (3)		
8308 (7)	11329 (7)	2722 (4)	4,2 (3)		
6331 (8)	10868 (6)	1956 (4)	3,5 (3)		
5658 (8)	11735 (7)	1081 (4)	4,4 (3)		
5533 (10)	13641 (8)	1173 (5)	5,4 (3)		
3883 (5)	11045 (5)	452 (3)	4,7 (2)		
	B_{eq} x 6364 (2) 4684 (5) 6976 (6) 8220 (6) 8759 (9) 10312 (10) 11219 (9) 10646 (9) 9104 (7) 8308 (7) 6331 (8) 5658 (8) 5533 (10) 3883 (5)	$B_{eq} = \frac{4}{3} \sum_{l} \sum_{j} \beta_{lj} a_{l} a_{l}$ $x \qquad y$ 6364 (2) 8580 (1) 4684 (5) 7826 (5) 6976 (6) 8108 (5) 8220 (6) 8294 (7) 8759 (9) 6762 (8) 10312 (10) 6812 (11) 11219 (9) 8303 (12) 10646 (9) 9809 (10) 9104 (7) 9810 (7) 8308 (7) 11329 (7) 6331 (8) 10868 (6) 5658 (8) 11735 (7) 5533 (10) 13641 (8) 3883 (5) 11045 (5)	$B_{eq} = \frac{4}{3} \sum_{l} \sum_{j} \beta_{lj} \mathbf{a}_{l} \cdot \mathbf{a}_{j} \cdot \frac{\mathbf{x}}{\mathbf{y}} = \frac{\mathbf{x}}{2}$ $\frac{\mathbf{x}}{6364} \begin{pmatrix} 2 \\ 2 \\ 8580 \\ (1) \\ 4684 \\ (5) \\ 7826 \\ (5) \\ 7826 \\ (5) \\ 1722 \\ (2) \\ 6976 \\ (6) \\ 8108 \\ (5) \\ 1277 \\ (3) \\ 8220 \\ (6) \\ 8294 \\ (7) \\ 2970 \\ (3) \\ 8759 \\ (9) \\ 6762 \\ (8) \\ 3427 \\ (5) \\ 10312 \\ (10) \\ 6812 \\ (11) \\ 4297 \\ (5) \\ 11219 \\ (9) \\ 8303 \\ (12) \\ 4659 \\ (5) \\ 10646 \\ (9) \\ 9809 \\ (10) \\ 4193 \\ (5) \\ 9104 \\ (7) \\ 9810 \\ (7) \\ 3326 \\ (4) \\ 8308 \\ (7) \\ 11329 \\ (7) \\ 2722 \\ (4) \\ 6331 \\ (8) \\ 10868 \\ (6) \\ 1956 \\ (4) \\ 5658 \\ (8) \\ 11735 \\ (7) \\ 1081 \\ (4) \\ 5533 \\ (10) \\ 13641 \\ (8) \\ 1173 \\ (5) \\ 3883 \\ (5) \\ 11045 \\ (5) \\ 452 \\ (3) \end{bmatrix}$		

0108-2701/83/091238-02\$01.50

© 1983 International Union of Crystallography

 Tableau 2. Distances interatomiques (Å) et angles interatomiques (°)

		• • •	
S(1)-O(2)	1,443 (5)	C(6)-C(7)	1,365 (12)
S(1)-O(3)	1,446 (7)	C(7)-C(8)	1,381 (12)
S(1)-C(4)	1,763 (4)	C(8)-C(9)	1,393 (8)
S(1)-C(11)	1,815 (5)	C(9)-C(10)	1,508 (8)
C(4) - C(5)	1,391 (8)	C(10) - C(11)	1,538 (7)
C(4) - C(9)	1,374 (7)	C(11) - C(12)	1,510 (9)
C(5)-C(6)	1,400 (9)	C(12) - C(13)	1,523 (9)
	, , ,	C(12) - C(14)	1,422 (6)
O(2)-S(1)-O(3)	118,6 (8)	C(6)-C(7)-C(8)	121,9 (16)
O(2)-S(1)-C(4)	110,5 (4)	C(7)-C(8)-C(9)	119,2 (12)
O(2)-S(1)-C(11)	111,3 (6)	C(4)-C(9)-C(8)	118,0 (10)
O(3)-S(1)-C(4)	109,0 (6)	C(4)-C(9)-C(10)	115,9 (9)
O(3)-S(1)-C(11)	110,7 (7)	C(8) - C(9) - C(10)	126,1 (11)
C(4)-S(1)-C(11)	94,2 (4)	C(9)-C(10)-C(11)	107,8 (7)
S(1)-C(4)-C(5)	125,8 (8)	S(1)-C(11)-C(10)	104,7 (5)
S(1)-C(4)-C(9)	110,3 (5)	S(1)-C(11)-C(12)	111,8 (6)
C(5)-C(4)-C(9)	124,0 (12)	C(10)-C(11)-C(12)	116,1 (9)
C(4)-C(5)-C(6)	116,4 (10)	C(11)-C(12)-C(13)	110,2 (9)
C(5)-C(6)-C(7)	120,5 (13)	C(11)-C(12)-O(14)	107,2 (7)
		C(13)-C(12)-O(14)	110.9 (8)

Fig. 1. Configuration de la molécule.

Fig. 2. Vue de la structure cristalline.

Fig. 3. Projection de Newman suivant la direction C(11)-C(12).

présence latérale du cycle thiophènedioxyde; les distances C-C vont de 1,365 à 1,400 Å et admettent pour valeur moyenne, 1,384 Å.

De même, les distances et angles à l'intérieur du cycle thiophènedioxyde sont très comparables à celles précédemment observées, la liaison S(1)-C(4) =1,763 (4) Å étant beaucoup plus courte que la liaison S(1)-C(11) = 1,815 (5) Å, vraisemblablement en raison d'une interaction entre les orbitales d_{xy} du soufre et les orbitales $p\pi$ du carbone aromatique C(4) (Koch & Moffit, 1951).

Il n'existe pas de liaison H intramoléculaire. Deux molécules sont reliées entre elles par une liaison H entre un atome d'oxygène du groupement hydroxyle [O(14)-H(14) = 1,11 (9) Å] et un des atomes d'oxygène du groupement thiophènedioxyde $[O(3)\cdots H(14) = 1,75 (9) Å]$, l'angle $O(14)-H(14)\cdots O(3)$ vaut 169 (2)°. Enfin, la projection de Newman (Fig. 3) suivant la direction C(11)-C(12) met en évidence la présence du diastéréoisomère *thréo*.

Références

- ABRAHAM, F., TRÉHOUX, J. & GRANDCLAUDON, P. (1983). Acta Cryst. C 39, 483–485.
- CROMER, D. T. & LIBERMAN, D. (1970). J. Chem. Phys. 53, 1891–1898.
- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104-109.
- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1970). Acta Cryst. B26, 274–285.
- GRANDCLAUDON, P. & LABLACHE-COMBIER, A. (1983). J. Org. Chem. Soumis à publication.
- Koch, H. P. & MOFFIT, W. E. (1951). Trans. Faraday Soc. 47, 7-15.
- PREWITT, C. T. (1966). SFLS-5. Fortrap IV Full-Matrix Crystallographic Least-Squares Program. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee.
- TRUCE, W. E. & KLINGER, T. C. (1970). J. Org. Chem. 35, 1834–1838.